Pharyngeal airway wall mechanics using tagged magnetic resonance imaging during medial hypoglossal nerve stimulation in rats.

نویسندگان

  • Michael J Brennick
  • Stephen Pickup
  • Lawrence Dougherty
  • Jacqueline R Cater
  • Samuel T Kuna
چکیده

To better understand pharyngeal airway mechanics as it relates to the pathogenesis and treatment of obstructive sleep apnoea, we have developed a novel application of magnetic resonance imaging (MRI) with non-invasive tissue tagging to measure pharyngeal wall tissue motion during active dilatation of the airway. Eleven anaesthetized Sprague-Dawley rats were surgically prepared with platinum electrodes for bilateral stimulation of the medial branch of the hypoglossus nerve that supplies motor output to the protrudor and intrinsic tongue muscles. Images of the pharyngeal airway were acquired before and during stimulation using a gated multislice, spoiled gradient recalled (SPGR) imaging protocol in a 4.7 T magnet. The tag pulses, applied before stimulation, created a grid pattern of magnetically imbedded dark lines that revealed tissue motion in images acquired during stimulation. Stimulation significantly increased cross-sectional area, and anteroposterior and lateral dimensions in the oropharyngeal and velopharyngeal airways when results were averaged across the rostral, mid- and caudal pharynx (P < 0.001). Customized software for tissue motion-tracking and finite element-analysis showed that changes in airway size were associated with ventral displacement of tissues in the ventral pharyngeal wall in the rostral, mid- and caudal pharyngeal regions (P < 0.0032) and ventral displacement of the lateral walls in the mid- and caudal regions (P < 0.0001). In addition, principal maximum stretch was significantly increased in the lateral walls (P < 0.023) in a ventral-lateral direction in the mid- and caudal pharyngeal regions and principal maximum compression (perpendicular to stretch) was significantly increased in the ventral walls in all regions (P < 0.0001). Stimulation did not cause lateral displacement of the lateral pharyngeal walls at any level. The results reveal that the increase in pharyngeal airway size resulting from stimulation of the medial branch of the hypoglossal nerve is predominantly due to ventral displacement of the ventral and lateral pharyngeal walls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MRI study of pharyngeal airway changes during stimulation of the hypoglossal nerve branches in rats.

The medial branch (Med) of the hypoglossal nerve innervates the tongue protrudor muscles, whereas the lateral branch (Lat) innervates tongue retractor muscles. Our previous finding that pharyngeal airflow increased during either selective Med stimulation or whole hypoglossal nerve (WHL) stimulation (coactivation of protrudor and retractor muscles) led us to examine how WHL, Med, or Lat stimulat...

متن کامل

Sleep magnetic resonance imaging with electroencephalogram in obstructive sleep apnea syndrome.

OBJECTIVE To evaluate the mechanism and level of upper airway obstruction in obstructive sleep apnea (OSA) patients during natural sleep, together with synchronous electroencephalogram and respiratory events registration at 3-Tesla magnetic resonance imaging (MRI) platform with high spatial and temporal resolution. STUDY DESIGN A prospective cohort study of 20 randomly selected OSA patients. ...

متن کامل

Influence of tongue muscle contraction and dynamic airway pressure on velopharyngeal volume in the rat.

The mammalian pharynx is a collapsible tube that narrows during inspiration as transmural pressure becomes negative. The velopharynx (VP), which lies posterior to the soft palate, is considered to be one of the most collapsible pharyngeal regions. I tested the hypothesis that negative transmural pressure would narrow the VP, and that electrical stimulation of extrinsic tongue muscles would reve...

متن کامل

Systemic administration of serotonin 2A/2C agonist improves upper airway stability in Zucker rats.

The effects of [+/-]-2,5-dimethoxy-4-iodoaminophentamine, a serotonin(2A/2C) receptor agonist, on pharyngeal airflow mechanics were examined in isoflurane-anesthetized lean and obese Zucker rats. The pharyngeal pressure associated with flow limitation, maximum inspiratory flow, oronasal resistance, genioglossus muscle activity, and arterial blood pressure (BP) were measured before and after the...

متن کامل

Magnetic resonance imaging of medial medullary infarction.

Medial medullary infarction is characterized by ipsilateral hypoglossal nerve palsy, contralateral hemiparesis sparing the face, and contralateral disturbance of deep sensation. Although it is possible to make a clinical diagnosis in typical patients, diagnosis is difficult if hypoglossal nerve palsy is absent. We describe a patient with medial medullary infarction without hypoglossal nerve pal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 561 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004